Aim and Scope

Discussions about the future positive impact of AI in everyday life have drawn out discussions of the current accomplishments and future potential of AI in developing the smart cities of the future. Current cities are facing significant challenges in coping with an aging infrastructure, reducing carbon emissions and energy consumption, integrating renewables, enhancing health services, reducing traffic and diminishing ambient noise. AI have a transformational role to play in addressing these challenges, by enabling the integration of information technologies with the city physical assets ensuring greener, safer and more efficient urban environments.

In a smart city, it is expected that large amounts of data will be available about its operation at each particular time instance. In addition, its complexity, i.e. being a system comprised of numerous heterogeneous subsystems, mandates a high level of operational accuracy in order to be stable and reliable.

The scope of this workshop is to explore applications of artificial intelligence tools that find wide use in utilization and management of city assets and thus contributing in the autonomous, reliable and efficient operation of smart city.

Topics of interest of the workshop include, but not limited to, applications of:

- Smart Grids
- Smart Energy Systems
- Smart Healthcare
- Smart Mobility
- Cybersecurity for Cities
- Smart Cars
- Smart Transportation
- Smart meters and Smart sensors
- Parameter Prediction and Forecasting
- Big Data Mining in Cities
- Monitoring and Surveillance Technologies
- Control of Cyber-Physical Systems
- Applications of Constraint Programming
- Multi-agent Simulation
- Knowledge representation in asset management
- Smart Houses
- Physical Asset Security

Workshop Chairs

Prof. Nikolaos Bourbakis, Wright State University, USA — email: nikolaos.bourbakis@wright.edu
Prof. Miltos Alamaniotis, Purdue University, USA — email: malamani@ecn.purdue.edu